
Sensor Management by using Bayesian Networks

                                           Nuri Yilmazer and Lisa Ann Osadciw 

                                    Department of Electrical Engineering and ComputerScience    
                                                               Syracuse University, Syracuse, NY- 13244-1240  
                                                                         Phone : 315-443-3366/Fax: 315-443-2583              
                                                                           nyilmaze@syr.edu/laosadci@syr.edu

 

Abstract - This paper introduces the sensor management
problem and uses Bayesian networks as a scalable approach to
handling the operational decisions concerning the sensor
network. In general, single sensor systems only provide partial
information on the state of the event or environment while
multisensor systems provide a synergistic effect, which
improves the quality and availability of information. Data
fusion techniques can effectively combine this environmental
information from similar and/or dissimilar sensors. Until
recently, the operator could manage these multiple systems
easily, but current systems are more complex and produce data
more quickly than earlier versions. A sensor manager becomes
necessary when this occurs to assist the operators. Researchers
have developed many single point sensor management
solutions. 

I. INTRODUCTION

Sensor management can be described as a system or pro-
cess that provides automatic or semi-automatic control of a
group of sensors. In general, sensor management approaches
can be divided into normative and descriptive methods[1].
Bayesian Network (BN) models, also called graphical mod-
els, have emerged as a powerful tool for representing and
computing complex probability distributions. Hence they
provide a compact representation as more of a normative
method than descriptive method. This paper presents a
unique approach to sensor management by using BN to
assist in making decisions impacting global performance
and, thus, individual sensor operation. 

The sensor operating parameters are selected to achieve
the desired global performance goals requested by the sensor
manager. The sensors are, therefore, controlled indirectly
through their performance. In this paper, performance
parameters such as the false acceptance rate, FAR, or
increasing accuracy are used. This approach, however, can
be applied to any sensor network that can be measured in
terms related to these performance parameters. In this study,
a general BN algorithm is designed to solve the sensor man-
agement problem.
Systems that automatically or semi-automatically control
a suite of sensors are defined as Sensor Management Sys-
tems [2]. In general, single sensor systems provide only par-
tial information, while multisensor systems provide more
complete information by using the synergistic effect of com-
bining different data types. As the sensor networks become
larger with either many sensors or more complex sensors, the
task of managing the network becomes overwhelming for an
operator. 

Fig. 1.R&D in Sensor Management Systems 

Sensor management can simply defined as the efficient
control of sensor resources [3]. Alternatively, the goal of
sensor management is to perform the right task at the right
time on the right object. Issues making the job tough include:

1. Environment is highly dynamic,

2. Sensor resources are insufficient,

3. Sensors have limited capability,

4. Sensor failures,



5. Interference and spoofing [4].

Research and development in the sensor management
area are summarized in Figure 1. In the 1960s, systems were
managed by pilots or operators, and sensor management was
very immature (i.e. level 1 maturity). In the late 1960s
through the 1970s, a few dedicated sensor managers were
built that concentrated on specific functions to ease the bur-
den on the pilots (i.e. still level 1 maturity). Ad-hoc sensor
management systems emerged in the 1980s and reach a level
2 in maturity and complexity. By the 1990s, fully integrated
sensor management systems emerge and are at a level 3 in
maturity. However, these systems lack a general methodol-
ogy that can easily be applied to any type of sensor network
(level 4 in maturity). Thus, each sensor network employs its
own special sensor manager.

Recent systems are even more complicated, and opera-
tors find it impossible to manage the whole system. The sen-
sor manager (SM) should reduce the operator’s workload by
automating sensor allocation and reconfiguration. Sensor
management can be thought of as a feedback control system,
which maintains a required level of system performance. SM
dynamically updates the sensor’s operating parameters based
on the system’s current performance, the dynamically chang-
ing situations, and current sensor capabilities. Most of the
research in sensor management to date has focused on track-
ing, detection and identification of the target[5]. These sen-
sor managers are not easily applied to other sensor networks.
This paper’s algorithm, however, supports most sensor man-
agement problems. 

Different methods such as neural networks, linear pro-
graming, heuristic or rule based systems have been applied
to solve the SM problem[6][7]. We present a sensor manager
based on Bayesian Networks, BN, also called graphical
models. At the heart of the SM problem is determining the
underlying probability distributions of the performance
parameters given the state of the world, sensors, and events.
The designer can use a priori knowledge to initialize these
random variables but the SM must be able to learn and adapt
the distributions as the system operates. The BN approach
has recently emerged as a powerful tool for representing and
computing complex probability distributions [8]. Hence,
BNs will be used to assist in the decisions surrounding the
choice of performance parameter requirements such as
reducing the error rate or increasing accuracy. This study
describes a general BN algorithm designed to solve the SM
problem. It can handle a wide variety of sensor manager
problems with minimal redesign.

1.1 Bayesian Network Review
Bayesian Networks were introduced in the 1980s for rep-

resenting and reasoning problems by modelling the elements
of uncertainty and, thus, adopting probability theory as a
basic framework. A BN consists of the following elements
[9].

1. A set of variables and a set of directed edges between 
variables.

2. Each variable has a finite set of mutually exclusive states.

3. The variables together with the directed edges form a 
directed acyclic graph (DAG).(A directed graph is acy-
clic if there is no directed path    s.t. 

).

4. To each variable A with parents  there is associ-

ated the potential table of conditional probabilities 
.

Fig. 2. A Simple Bayesian Network

A simple example of Bayesian Network is shown in Fig-
ure 2. The arrows represent the causal relationship between
the variables. The fever is caused by a cold or angina. Each
node is a random variable. Cold and Angina, which are
defined by a priori probabilities, do not have parent nodes
because they are the root causes. Fever, “sore throat”, and
“see spots” are defined by conditional probability distribu-
tions. 

BNs are easy to modify and create by a good knowledge
engineer. Their structure and parameters can be learned from
the data through efficient algorithms. Once a BN is created it
can be used in decision-making. Uncertainty about the state
of world is represented by a probability distribution over the
states. Probability can be considered a rational agent’s
degree of belief about the uncertain states of the world. By
using a BN, beliefs are updated by conditioning on new
information about the world’s state.

2. DEFINITION OF THE PROBLEM

The security of buildings is an increasing concern nowa-
days. One critical problem is assuring employees safety
within their employer’s building. In this building access
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application, employees need varying levels of access to vari-
ous regions of a building. The access requirements depend
on an employee’s daily tasks. Specific employees must han-
dle security, finances, and sensitive information, which may
be done in exclusive regions of the building. Clients or cus-
tomers must move through other regions of the building all
day. 

Currently, this problem is either ignored resulting in a
lack of security, or people are given something to carry like
an identification card or key. Another option is to use codes
and passwords. Both of these approaches to the problem are
very prone to errors resulting in granting access to imposters
and denying access to a genuine employees or customers.
Sensor networks consisting of biometric sensors interfaced
to door locking mechanisms is a better solution in terms of
security and ease of use. Some more common biometric sen-
sors include an optical or ultrasonic fingerprinting system, a
face recognition sensor, iris scanning sensor, voice recogni-
tion sensor, or a hand geometry sensor. In this section, the
BN that manages this network is provided as an example of
an SM.

Performance of the biometric sensor network is based on
decision error rate, user acceptability, and user circumven-
tion[10]. The decision error rate is how often an imposter is
granted access or, conversely, a genuine user is rejected
access. User acceptability is the level that the user feels his/
her privacy or physical space is invaded. Retinal scanning is
rarely used, currently, because users do not want to place
their heads on a device and have light beams scanning their
retinas. These systems are frequently avoided. User circum-
vention results if the system takes too long or rejects the user
too often. 

A sensor manager can be used to manage the biometric
sensors as well as fuse the decisions from the sensors [10].
One complex issue in this building accessibility system is
how to quantitatively and automatically vary an individual’s
security level while taking into account the building’s safety
status, the individual’s job, and the uniqueness of the
employee’s biometric features [10]. Uniqueness is a measure
of how different one’s biometric data is from the rest of the
population. Some people have indistinct features rendering
that biometric modality useless. The accessibility require-
ments for an individual can be based on their job description.
Figure 5 illustrates the network’s functions and how a sensor
manager would interface with the network. The SM accepts
the uniqueness of that individual’s biometric features, his/her
job description, and the security status of the building. The
SM outputs the costs associated with each sensor’s decision
errors, and any needed sensor operating parameters such as
decision threshold.

 The security level corresponding to the job description
and biometric features constitute the information gathered
when an employee is enrolled into the system. Biometric
features include any data that a biometric system requires to
verify a person’s identity. For voice recognition, this
includes the voice samples required for comparison. In a
face recognition system, an image of the face must be col-
lected. The biometric data usually requires some processing
before a comparison template is produced. This additional
processing of the reference data is done at the time of enroll-
ment as well. The biometric features are collected and
matched against the enrollment features when the individual
requests access. When the employee accesses the system,
one of four consequences occurs 

1. the genuine employee is accepted,

2. the genuine employee is rejected,

3. the imposter is accepted,

4. the imposter is rejected.

The system performance is based on the total error rate or
the rate consequence 2 and 3 are made. The errors described
in 2 and 3, the false rejection rate (FRR) and false accep-
tance rate (FAR), respectively. The sensor manager assigns a
cost to each error type, which results in varying security lev-
els for different employees. We define the error rates as

 and (1)

(2)

where , the person is an imposter, , the person is gen-

uine, and the global decision made by the fusion system is 

. (3)

The total error including costs is
(4)

where FAR is the false acceptance rate, FRR is the false rejec-
tion rate, and CFA is the cost associated with the false accep-
tance rate[11]. A cost of 1 results in the total error rate being
composed equally of the FAR and FRR. Accuracy, which is
the focus of this paper, is equal to the total error rate when
defined by Equation (4) with a CFA of 1.

The conditional probability density functions are
 and  where di is the decision output of the

ith biometric sensor given the genuine person and the
imposter, respectively. In this example, the sensor decisions
are fused. The sensor decision is the likelihood ratio test
given by

FARi
P dg 1 H0 )=(=

FRRi
P dg 0 H1 )=(=

H0 H1

dg
0 the person is an imposter,
1 the person is genuine     ,
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                               (5)
where  is an appropriate threshold. The optimum Bayesian

fusion rule ([10]) allowing access to a building for N sensors
is 

(6)

where N is the number of sensors.The rule in Equation (4)
assumes an equal a priori probability of an imposter and gen-

uine user. There are a total of possible fusion rules if all
possible combinations of the sensor decisions are consid-
ered. Since FAR, FRR, and CFA are set by SM, the SM con-
trols the fusion of the individual sensor decisions.

Each node for the BN that handles this building security
application represents a random variable. An example BN
controlling the main entrance to the building is given in Fig-
ure 4. The node (High Security Building State) has three
mutually exclusive states which are high, medium and low
level. The High Security Job node also has these same three
mutually exclusive states. Uncertainty about the state of the
world is represented by the probability distribution over
states for the nodes in Figure 4. The BN is used to update
beliefs, which are represented by the node’s conditional
probability distribution and updated by conditioning on new
information or evidence about the world. After the beliefs
are updated, the error cost in Equation (4) is updated. Thus,
the global decision is modified by the new information. The
5 actions to be taken correspond to the 5 arrows exiting Fig-
ure 4. These include disabling/enabling sensors 1,2, and 3,
and increasing/decreasing the false acceptance rate cost and
false rejection rate cost. 
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Fig. 3.f Overview of Building Security System

In this study, it is assumed that the Security Guard has the

highest probability of requiring access to restricted rooms.

Imposters will most likely try to steal the identity of these

individuals. Identifying security guards must have the lowest

error rate and  is set high at 0.56. All the values are exagger-

ated for demonstration purposes. Typical values of false

acceptance rates are around 0.001 but these are so low that it

is difficult to demonstrate variations between systems. The

company president also requires a lower identification error

rate; the false acceptance rate for this employee is 0.12. The

average employee is 0.36. 

The extended BN simulation is shown in Figure 5. The

conditional probability distributions are either entered by a

knowledge engineer or learned from data. For this simula-

tion, they were entered. For varied uniqueness values in node

3, the resulting output FAR is adjusted as can be seen in Fig-

ure 6 and Figure 7. Table I shows how the FAR changes for

different scenarios.As the confidence in Uniqueness in 3

node increases, this will decrease the FAR. Two different sit-

uations are examined in here for different values of confi-

dences in (uniqueness 3, 2, and 1 nodes), the result can be

seen in Table2.
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Fig. 4.Bayesian Network for the Sensor Manager at the Main Entrance

TABLE I.

Uniqueness 
in 3 (%) FAR (%) FRR(%)

90 42.4 55.6

80 43.1 55.0

70 43.9 54.4

60 44.6 53.8

50 45.3 53.2

40 46.1 52.6

30 46.8 52.0

20 47.5 51.4

10 48.3 50.8
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Fig. 5.BN for the sensor manager

Fig. 6.BN for the sensor manager



Fig. 7.BN for the sensor manager

3. CONCLUSION

 In this study, an extended BN algorithm is designed to
solve sensor management problem of building security. Dif-
ferent confidence values were presented for this sensor man-
agement problem demonstrating the possibilities of this
approach. Depending on the changing state of the world such
as, the security level and job title, BN updates the error cost
and sent it to Fusion center to make the correct decision.
Every time the situation changes, BN updates the system. 

This paper illustrates how easily the extended BN can be
applied to the general sensor management problem. The
graphical nature of the influence diagram assists the system
designer. The utility function can reflect the design parame-
ters used by the system designer. Utility is so closely coupled
to the resulting decisions that the utility and decisions must
be designed together. The extended BN helps systems make

TABLE II.

Uniquene
ss in 3 
(%)

Uniquene
ss in 2 
(%)

Uniquene
ss in 2 
(%) FAR (%) FRR(%)

20 10 15 51.7 48.3

90 85 95 42.6 55.7
more accurate decisions concerning the operating parame-
ters. The advantages of automation and learning also follow
an extended BN implementation. 
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